1,json
Json与Jsonb
[!WARNING]
PG里json是文本方式存储; PG里jsonb是二进制存储,存储时会删除空格以及重复的键值对(保留后插入的键值); PG里jsonb存储时已经解析好了结构,也支持索引,所有键值对已排好序; PG里jsonb的操作有丰富的原生函数,以jsonb开头
Jsquery
[!WARNING]
JsQuery是PG里的一个扩展,支持json的查询,使用GIN索引; https://github.com/postgrespro/jsquery
SQL/JSON Path Language
[!WARNING]
PG12支持,基于Json元素的复杂SQL查询; https://www.postgresql.org/docs/12/functions-json.html#FUNCTIONS-SQLJSON-PATH
如何选择?
PG12直接用的Json Path特性,原生的函数支持非常丰富; PG12以下版本有复杂的json查询可以使用Jsquery扩展
1. 使用json数据类型
使用json数据类型的好处是结构比较灵活,同时PG里也有很多相关的函数和操作符。 适合场景:比如大屏数据监控展示,监控指标可灵活增删,指标项内容也可以随时扩充,结合ajax异步刷新,中间应用层无感
sql
postgres=# create table test_json(id int,info json);
CREATE TABLE
插入一条数据
postgres=# insert into test_json
values(1,'{"name":"jerome","familyName":"peng","company":"enmotech"}');
INSERT 0 1
查询第一条记录里json类型里的某一个key的value值
postgres=# select info ->> 'company' from test_json where id=1 ;
?column?
----------
enmotech
(1 row)
返回json对象用 ->>
返回文本值用 ->
按路径查询
'{"a": {"b":{"c": "foo"}}}'::json #>> '{a,b}'
postgres=# select '{"a": {"b":{"c": "foo"}}}'::json #>> '{a,b}';
?column?
--------------
{"c": "foo"}
(1 row)
postgres=# create table test_json(id int,info json);
CREATE TABLE
插入一条数据
postgres=# insert into test_json
values(1,'{"name":"jerome","familyName":"peng","company":"enmotech"}');
INSERT 0 1
查询第一条记录里json类型里的某一个key的value值
postgres=# select info ->> 'company' from test_json where id=1 ;
?column?
----------
enmotech
(1 row)
返回json对象用 ->>
返回文本值用 ->
按路径查询
'{"a": {"b":{"c": "foo"}}}'::json #>> '{a,b}'
postgres=# select '{"a": {"b":{"c": "foo"}}}'::json #>> '{a,b}';
?column?
--------------
{"c": "foo"}
(1 row)
2. 使用jsonb数据类型
使用jsonb数据类型的好处是后续处理快(插入时慢,需要做解析),但不保证插入时的键值顺序,插入解析时做了去除空格、重复键删除的处理
某些场景不适合使用jsonb而应该用json,例如对所有键值对做Hash,传输后做验证需要保证键的顺序
sql
postgres=# create table test_jsonb(id int,info jsonb);
CREATE TABLE
插入一条数据
postgres=# insert into test_jsonb
values(1,'{"company":"enmotech", "name":"jerome","name":"peng","career":"a dba"}');
INSERT 0 1
下面查询结果可以看到jsonb类型做了优化处理
删除了空格和重复键,同时做了排序(先根据键的长度排序,再根据键排序)
postgres=# select info from test_jsonb;
info
------------------------------------------------------------
{"name": "peng", "career": "a dba", "company": "enmotech"}
(1 row)
包含查询
postgres=# select * from test_jsonb
where info @> '{"company":"enmotech"}';
id | info
----+------------------------------------------------------------
1 | {"name": "peng", "career": "a dba", "company": "enmotech"}
(1 row)
postgres=# create table test_jsonb(id int,info jsonb);
CREATE TABLE
插入一条数据
postgres=# insert into test_jsonb
values(1,'{"company":"enmotech", "name":"jerome","name":"peng","career":"a dba"}');
INSERT 0 1
下面查询结果可以看到jsonb类型做了优化处理
删除了空格和重复键,同时做了排序(先根据键的长度排序,再根据键排序)
postgres=# select info from test_jsonb;
info
------------------------------------------------------------
{"name": "peng", "career": "a dba", "company": "enmotech"}
(1 row)
包含查询
postgres=# select * from test_jsonb
where info @> '{"company":"enmotech"}';
id | info
----+------------------------------------------------------------
1 | {"name": "peng", "career": "a dba", "company": "enmotech"}
(1 row)
3. 使用json path
sql
postgres=# create table test_jsonpath(id int,info jsonb);
CREATE TABLE
insert into test_jsonpath
values(1,'{"a1":"eggs"}');
insert into test_jsonpath
values(2,'{"a1":"egg"}');
insert into test_jsonpath
values(3,'{"a1":"abc","b1":"eggs"}');
insert into test_jsonpath
values(4,'{"a1":"abc","b1":"egg"}');
insert into test_jsonpath
values(5,'{"a1":{"a2": "eggs"}}');
insert into test_jsonpath
values(6,'{"a1":{"a2": "egg"}}');
insert into test_jsonpath
values(7,'{"a1":{"a2": ["eg","eggs"]}}');
insert into test_jsonpath
values(8,'{"a1":{"a2": ["eg","egg","gg"]}}');
上面设计id为偶数的行包含全匹配关键字egg
顶层关键字全匹配
postgres=# select * from test_jsonpath
where info @? '$ ? (@.* == "egg")';
id | info
----+----------------------------
2 | {"a1": "egg"}
4 | {"a1": "abc", "b1": "egg"}
(2 rows)
顶层关键字模糊查询
postgres=# select * from test_jsonpath
where info @? '$ ? (@.* like_regex "egg")';
id | info
----+-----------------------------
1 | {"a1": "eggs"}
2 | {"a1": "egg"}
3 | {"a1": "abc", "b1": "eggs"}
4 | {"a1": "abc", "b1": "egg"}
(4 rows)
顶层匹配及所有层级关键字全匹配
postgres=# select * from test_jsonpath
where info @? '$ ? (@.** == "egg")';
id | info
----+-------------------------------------
2 | {"a1": "egg"}
4 | {"a1": "abc", "b1": "egg"}
6 | {"a1": {"a2": "egg"}}
8 | {"a1": {"a2": ["eg", "egg", "gg"]}}
(4 rows)
或者使用下面的函数
select * from test_jsonpath
where jsonb_path_exists(info, '$ ? (@.** == "egg")');
模糊查询
postgres=# select * from test_jsonpath
where jsonb_path_exists(info, '$ ? (@.** like_regex "eggs")');
id | info
----+--------------------------------
1 | {"a1": "eggs"}
3 | {"a1": "abc", "b1": "eggs"}
5 | {"a1": {"a2": "eggs"}}
7 | {"a1": {"a2": ["eg", "eggs"]}}
(4 rows)
postgres=# create table test_jsonpath(id int,info jsonb);
CREATE TABLE
insert into test_jsonpath
values(1,'{"a1":"eggs"}');
insert into test_jsonpath
values(2,'{"a1":"egg"}');
insert into test_jsonpath
values(3,'{"a1":"abc","b1":"eggs"}');
insert into test_jsonpath
values(4,'{"a1":"abc","b1":"egg"}');
insert into test_jsonpath
values(5,'{"a1":{"a2": "eggs"}}');
insert into test_jsonpath
values(6,'{"a1":{"a2": "egg"}}');
insert into test_jsonpath
values(7,'{"a1":{"a2": ["eg","eggs"]}}');
insert into test_jsonpath
values(8,'{"a1":{"a2": ["eg","egg","gg"]}}');
上面设计id为偶数的行包含全匹配关键字egg
顶层关键字全匹配
postgres=# select * from test_jsonpath
where info @? '$ ? (@.* == "egg")';
id | info
----+----------------------------
2 | {"a1": "egg"}
4 | {"a1": "abc", "b1": "egg"}
(2 rows)
顶层关键字模糊查询
postgres=# select * from test_jsonpath
where info @? '$ ? (@.* like_regex "egg")';
id | info
----+-----------------------------
1 | {"a1": "eggs"}
2 | {"a1": "egg"}
3 | {"a1": "abc", "b1": "eggs"}
4 | {"a1": "abc", "b1": "egg"}
(4 rows)
顶层匹配及所有层级关键字全匹配
postgres=# select * from test_jsonpath
where info @? '$ ? (@.** == "egg")';
id | info
----+-------------------------------------
2 | {"a1": "egg"}
4 | {"a1": "abc", "b1": "egg"}
6 | {"a1": {"a2": "egg"}}
8 | {"a1": {"a2": ["eg", "egg", "gg"]}}
(4 rows)
或者使用下面的函数
select * from test_jsonpath
where jsonb_path_exists(info, '$ ? (@.** == "egg")');
模糊查询
postgres=# select * from test_jsonpath
where jsonb_path_exists(info, '$ ? (@.** like_regex "eggs")');
id | info
----+--------------------------------
1 | {"a1": "eggs"}
3 | {"a1": "abc", "b1": "eggs"}
5 | {"a1": {"a2": "eggs"}}
7 | {"a1": {"a2": ["eg", "eggs"]}}
(4 rows)
4. 使用jsquery
PG12以下,9.4及以上版本可以安装jsquery扩展进行复杂查询
sql
$ git clone https://github.com/postgrespro/jsquery.git
$ cd jsquery
$ make USE_PGXS=1 PG_CONFIG=/opt/pgsql/bin/pg_config
$ make USE_PGXS=1 PG_CONFIG=/opt/pgsql/bin/pg_config install
$ psql
postgres=# create extension jsquery ;
CREATE EXTENSION
上面的查询使用jsquery
postgres=# select * from test_jsonpath
where info @@ '* = "egg"'::jsquery;
id | info
----+-------------------------------------
2 | {"a1": "egg"}
4 | {"a1": "abc", "b1": "egg"}
6 | {"a1": {"a2": "egg"}}
8 | {"a1": {"a2": ["eg", "egg", "gg"]}}
(4 rows)
$ git clone https://github.com/postgrespro/jsquery.git
$ cd jsquery
$ make USE_PGXS=1 PG_CONFIG=/opt/pgsql/bin/pg_config
$ make USE_PGXS=1 PG_CONFIG=/opt/pgsql/bin/pg_config install
$ psql
postgres=# create extension jsquery ;
CREATE EXTENSION
上面的查询使用jsquery
postgres=# select * from test_jsonpath
where info @@ '* = "egg"'::jsquery;
id | info
----+-------------------------------------
2 | {"a1": "egg"}
4 | {"a1": "abc", "b1": "egg"}
6 | {"a1": {"a2": "egg"}}
8 | {"a1": {"a2": ["eg", "egg", "gg"]}}
(4 rows)